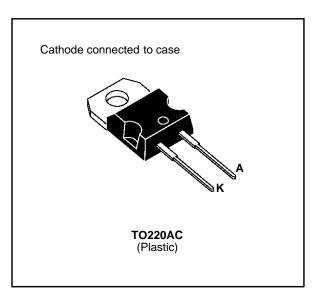


BY 233-200 →600

FAST RECOVERY RECTIFIER DIODES

- LOW SWITCHING LOSSES
- LOW PEAK RECOVERY CURRENT IRM
- THE SPECIFICATIONS AND CURVES ENABLE THE DETERMINATION OF trr AND IRM AT 100°C UNDER USERS CONDITIONS


APPLICATIONS

- MOTOR CONTROLS (FREE-WHEELING DIODE)
- SWITCH MODE POWER SUPPLIES
- SNUBBER DIODES

DESCRIPTION

Fast recovery rectifiers suited for power switching applications.

ABSOLUTE MAXIMUM RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
I _{FRM}	Repetive Peak Forward Current	$t_p \le 20 \mu s$	100	А
I _{F (RMS})	RMS Forward Current	20	А	
I _{F (AV)}	Average Forward Current	$T_{c} = 115^{\circ}C$ $\delta = 0.5$	10	А
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	100	A
P _{tot}	Power Dissipation	$T_c = 90^{\circ}C$	20	W
T _{stg} Tj	Storage and Junction Temperature Range		- 40 to + 150 - 40 to + 150	°C

Symbol	Parameter		Unit		
	i arameter	200	400	600	onit
V _{RRM}	Repetitive Peak Reverse Voltage	200	400	600	V
V _{RSM}	Non Repetitive Peak Reverse Voltage	250	450	650	V

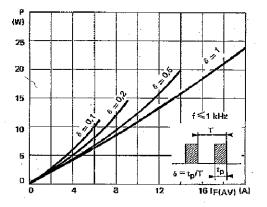
THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j-c)}	Junction-case	3	°C/W

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol	Test Conditions		Min.	Тур.	Max.	Unit
I _R	T _j = 25°C	$V_R = V_{RRM}$			20	μA
	$T_j = 100^{\circ}C$				1	mA
VF	T _j = 25°C	I _F = 8A			1.5	V
	$T_j = 100^{\circ}C$				1.25	


RECOVERY CHARACTERISTICS

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
t _{rr}	$\begin{array}{ll} T_{j}=25^{\circ}C & I_{F}=1A & di_{F}/dt=-15A/\mu s \\ V_{R}=30V & \end{array}$			150	ns
Q _{rr}	$\begin{array}{ll} T_{j}=25^{\circ}C & I_{F}=8A & di_{F}/dt=-20A/\mu s \\ V_{R}=100V & \end{array}$		2.2		μC
I _{RM}	$\begin{array}{ll} T_{j}=25^{\circ}C & I_{F}=8A & di_{F}/dt=-20A/\mu s \\ V_{R}=100V & \end{array}$			4	А

To evaluate the conduction losses use the following equations: V_F = 0.95 + 0.012 I_F P = 0.95 x $I_{F(AV)}$ + 0.012 $I_F^{2}({\rm RMS})$

Figure 1. Low frequency power losses versus average current

Figure 3. Non repetitive peak surge current versus overload duration

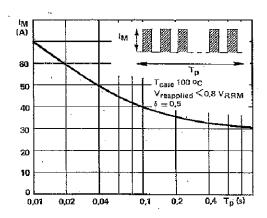
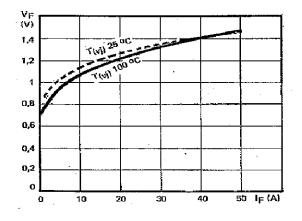



Figure 5. Voltage drop versus forward current

Figure 2. Peak current versus form factor

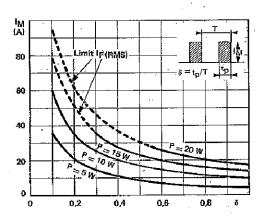


Figure 4. Thermal impedance versus pulse width

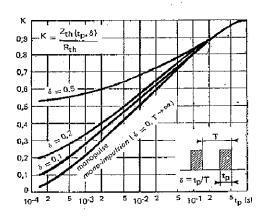
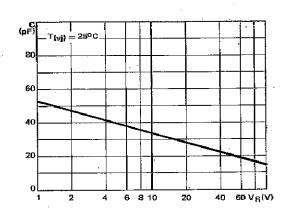



Figure 6. Capacitance versus reverse voltage

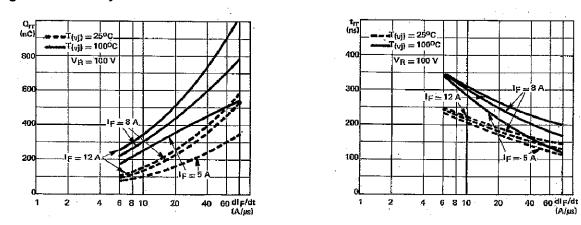
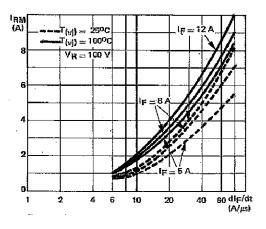
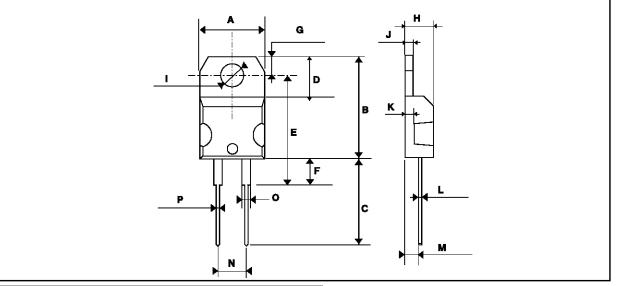



Figure 7. Recovery time versus di_F/d_{t-}

Figure 8. Recovery time versus di_F/d_{t-}


Figure 9. Peak reverse current versus di_F/d_{t-}

PACKAGE MECHANICAL DATA

TO220AC (Plastic)

	DIMENSIONS				
REF.	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
А	10.0	10.4	0.393	0.409	
В	15.2	15.9	0.598	0.626	
С	13	14	0.511	0.551	
D	6.2	6.6	0.244	0.260	
E	16.4 typ.		0.645 typ.		
F	3.5	4.2	0.137	0.165	
G	2.65	2.95	0.104	0.116	
Н	4.4	4.6	0.173	0.181	
I	3.75	3.85	0.147	0.151	
J	1.23	1.32	0.048	0.051	
K	1.27 typ.		0.050 typ.		
L	0.49	0.70	0.019	0.027	
М	2.4	2.72	0.094	0.107	
N	4.95	5.15	0.194	0.203	
0	1.14	1.70	0.044	0.067	
Р	0.61	0.88	0.024	0.034	

Cooling method: by conduction (method C) Marking: type number Weight: 2.4g Recommended torque value: 80cm. N

Maximum torque value: 100cm.N

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

